Mineral skeletogenesis in sponges1
نویسنده
چکیده
Sponges secrete a variety of mineral skeletons consisting of calcite, aragonite, and (or) amorphous silica that confer strength and protect them from physical perturbations. Calcification takes place in a solution of bicarbonate and calcium ions, which is supersaturated with respect to both calcite and aragonite. In contrast, siliceous spicules are formed from an environment that is undersaturated with respect to silicon. Silification is the predominant process of biomineralization in extant sponges (92% of the species). The number of axes of symmetry in the large skeletal elements (megasclere spicules) is the main skeletal difference between the classes Hexactinellida (monaxons and triaxons) and Demospongiae (monaxons and tetraxons). Hypersilification occurs in both lithistid demosponges and hexactinellids, which are mostly confined to silicon-rich environments. Both siliceous and calcareous sponge skeletons are deposited within a well-defined restricted space by the so-called matrix-mediated mineralization. Both processes require organic molecules, which are secreted by a particular cell type (sclerocytes) and guide spicule formation. In most siliceous sponges, these molecules form a discrete filament, which is mainly triangular or quadrangular in cross section in demosponges and hexactinellids, respectively. No discrete axial filament has been reported for calcareous sponges. Silica polycondensation produces nanospheres to microspheres, which are arranged in concentric layers to form the spicules. The potential number of siliceous spicule types in a sponge species appears to be fixed genetically, but the environmental conditions (specifically the availability of silicon) may determine whether a genetically determined spicule type is finally expressed. In this study I review the current knowledge on sponge skeletogenesis, from molecular, cellular, and structural points of view. The contribution of environment variables, as well as the proliferation and decay of the main skeleton types in the past, are also considered. Résumé : Les éponges sécrètent une variété de squelettes minéraux de calcite, d’aragonite et(ou) de silice amorphe qui les renforcent et les protègent des perturbations physiques. La calcification se produit à partir d’une solution d’ions bicarbonate et calcium qui est sursaturée par rapport à la calcite et l’aragonite. En revanche, les spicules siliceux se forment à partir d’un milieu qui est sous-saturé en silicium. La silification est le processus dominant de biominéralisation chez les éponges actuelles (92 % des espèces). Le nombre d’axes de symétrie des éléments majeurs du squelette (les spicules mégasclères) est la plus grande différence entre les squelettes de la classe des hexactinellides (à un et trois axes) et ceux des desmosponges (à un et quatre axes). L’hypersilification se produit à la fois chez les desmosponges lithistides et les hexactinellides qui sont en majorité confinés dans les milieux riches en silicium. Les squelettes, tant siliceux que calcaires, des éponges se déposent dans un espace réduit bien défini, par moyen d’une minéralisation dirigée sous l’influence d’une matrice. Les deux processus requièrent des molécules organiques qui sont sécrétées par un type particulier de cellules (les sclérocytes) et qui guident la formation des spicules. Chez la plupart des éponges siliceuses, ces molécules forment un filament distinct qui est principalement triangulaire en coupe chez les desmosponges et quadrangulaire chez les hexactinellides. On ne signale pas de filament axial distinct chez les éponges calcaires. La polycondensation de la silice produit des nanosphères et des microsphères qui sont disposées en couches concentriques pour former les spicules. Le nombre potentiel de types de spicules siliceux chez une espèce d’éponge semble être fixé génétiquement, bien que les conditions du milieu, en particulier la disponibilité du silicium, puissent déterminer si un type particulier de spicule fixé génétiquement sera finalement exprimé. Le présent étude fait le point sur les connaissances actuelles de la squelettogenèse chez les éponges, des points de vue moléculaire, cellulaire et structural. Il est question aussi de la contribution des variables du milieu, de même que de la prolifération et de la disparition des principaux types de squelettes dans le passé. [Traduit par la Rédaction] Uriz 356 Can. J. Zool. 84: 322–356 (2006) doi:10.1139/Z06-032 © 2006 NRC Canada 322 Received 24 November 2005. Accepted 14 February 2006. Published on the NRC Research Press Web site at http://cjz.nrc.ca on 17 March 2006. M.-J. Uriz. Centre d’Estudis Avançats de Blanes (Consejo Superior de Investigaciones Científicas), Accés a la Cala St. Francesc, 14, 17300 Blanes (Girona), Spain (e-mail: [email protected]). 1This review is one of a series dealing with aspects of the biology of the phylum Porifera. This series is one of several virtual symposia on the biology of neglected groups that will be published in the Journal from time to time.
منابع مشابه
Evaluation of gene expression pattern of matrix gla protein and Bone gla protein as skeletogenesis markers in Persian sturgeon (Acipenser persicus Bordin, 1897)
Bone gla protein and matrix gla protein are of common origin with evolutionary relation and have similar structural features and are functional in the formation of skeletal structures The present study have been evaluated the genes encoding vitamin k-dependant proteins (VKDPs) expression at hatching time (0), 1, 3, 6, 10, 12,14, 20, 30 and 50 in skeletal Persian sturgeon sturgeon (Acipenser per...
متن کاملSkeletogenesis by transfated secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos.
In the sea urchin embryo, primary mesenchyme cells (PMCs) are committed early in development to direct skeletogenesis, provided that a permissive signal is conveyed from adjacent ectoderm cells. We showed that inhibition of extracellular matrix (ECM)-ectoderm cells interaction, by monoclonal antibodies (mAb) to Pl-nectin, causes an impairment of skeletogenesis and reduced expression of Pl-SM30,...
متن کاملPI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.
Skeletogenesis in the sea urchin embryo is a simple model of biomineralization, pattern formation, and cell-cell communication during embryonic development. The calcium carbonate skeletal spicules are secreted by primary mesenchyme cells (PMCs), but the skeletal pattern is dictated by the embryonic ectoderm. Although the process of skeletogenesis is well characterized, there is little molecular...
متن کاملMicroRNAs in skeletogenesis.
MicroRNAs (miRNAs) are a class of highly conserved small noncoding RNAs that negatively regulate gene expression by imperfectly base pairing to the 3'-untranslated region of their target mRNAs, leading to mRNA degradation or translational inhibition. The emerging field of miRNA biology has begun to unravel roles for these regulatory molecules in a variety of biological processes. This review co...
متن کاملSOXC proteins amplify canonical WNT signaling to secure nonchondrocytic fates in skeletogenesis
Canonical WNT signaling stabilizes β-catenin to determine cell fate in many processes from development onwards. One of its main roles in skeletogenesis is to antagonize the chondrogenic transcription factor SOX9. We here identify the SOXC proteins as potent amplifiers of this pathway. The SOXC genes, i.e., Sox4, Sox11, and Sox12, are coexpressed in skeletogenic mesenchyme, including presumptive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006